

Lady Lane Industrial Estate IP7 6BQ Hadleigh, Suffolk

UNITED KINGDOM

Siderise (Special Products) Limited

Product Testing

Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark

CustomerSupport@eurofins.com www.eurofins.com

VOC EMISSION TEST REPORT CDPH

1 November 2023

1 Sample Information

Sample name Batch no. Stated production date Product type Stated thickness, mm Sample reception XFS090 (FS60) 121105 30/08/2023 Technical insulation 90 05/09/2023

2 Brief Evaluation of the Results

Regulation or protocol	Conclusion	Version of regulation or protocol
CDPH §	Pass	CDPH/EHLB/Standard Method V1.2. (January 2017)
Full details based on the testing and direct		are available in the following pages

Full details based on the testing and direct companson with limit values are available in the following pages Regarding pass/fail decision rule please see appendix § See section 4.4. for deviations.

Henriette Buch Lauersen Analytical Service Manager

y selles

Rasmus Verdier Analytical Service Manager

Table of contents

1		Sample Information	1
2		Brief Evaluation of the Results	1
3	3.1 3.2	Applied Test Methods General Test References Specific Laboratory Sampling and Analyses	3 3 3
4	4.1 4.2 4.3 4.4 4.5	Test Parameters, Sample Preparation and Deviations VOC Emission Chamber Test Parameters Preparation of the Test Specimen Picture of Sample Deviations from Referenced Protocols and Regulations Air Samplings from the Test Chamber	4 4 4 5 5
5	5.1 5.2 5.3	Results VOC Emission Test Results after 11 Days VOC Emission Test Results after 12 Days VOC Emission Test Results after 14 Days	6 6 6 6
6	6.1	Summary and Evaluation of the Results Comparison with Limit Values of CDPH	7
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	AppendicesChromatogram of VOC Emissions after 14 DaysChain of CustodyHow to Understand the ResultsDescription of VOC Emission TestQuality AssuranceAccreditationUncertainty of the Test MethodDecision RulesVersion History	8 9 11 12 13 13 13 13 13

The analysis are carried out on the sample(s) as received and the result(s) are only valid for the tested sample(s).

This report may only be copied or reprinted in its entirety

3 Applied Test Methods

3.1 General Test References

Regulation, protocol or standard	Version	Reporting limit VOC [µg/m³]	Calculation of TVOC	Combined uncertainty ⁼ [RSD(%)]
EN 16516	2017 + A1:2020	5	Toluene equivalents	22%
ISO 16000 -3 -6 -9 -11	2006-2022 depending on part	2	Toluene equivalents	22%
ASTM D5116-10	2010		749	<u>_</u>
CDPH	CDPH/EHLB/Standard Method V1.2. (January 2017)	2	Toluene equivalents	22%

3.2 Specific Laboratory Sampling and Analyses

Procedure	External Method	Internal SOP	Quantification limit / sampling volume	Analytical principle	Uncertainty" [RSD(%)]
Sample preparation	ISO 16000-11:2006, EN 16516:2017+A1:2020, CDPH:2017	71M549810	-	-	191
Emission chamber testing	ISO 16000-9:2006, EN 16516:2017+A1:2020	71 M54 9811	190	Chamber and air control	(* 2
Sampling of VOC	ISO 16000-6:2021, EN 16516:2017+A1:2020	71M549812	5 L	Tenax TA	220
Analysis of VOC	ISO 16000-6:2021, EN 16516:2017+A1:2020	71M542808B	1 µg/m³	ATD-GC/MS	10%
Sampling of aldehydes	ISO 16000-3:2022, EN 16516:2017+A1:2020	71M549812	35 L	DNPH	1
Analysis of aldehydes	ISO 16000-3:2022, EN 16516:2017+A1:2020	71M 54 8400	3-6 µg/m³	HPLC-UV	10%
Sampling on Charcoal tubes	ISO 16200-1:2001	71M549812	60 L	Charcoal	14
Analysis of Charcoal tubes *	ISO-16200-1:2001	71M546081	20 µg/m³	Headspace- GC/MS	10%

The analysis are carried out on the sample(s) as received and the result(s) are only valid for the tested sample(s).

4 Test Parameters, Sample Preparation and Deviations

Product Testing

4.1 VOC Emission Chamber Test Parameters

Parameters	Value	Sample Conditions	Value
Chamber volume, V[L]	119	Date and time of unpacking	12/09/2023 - 12:27
Air change rate, n[h-1]	1.0	Preconditioning period	
Air Velocity [m/s]	0.1	Chamber test period	12/09/2023 - 26/09/2023
Area specific ventilation rate, q [m/h or m³/m²/h]	2.5	Analytical test period	12/09/2023 - 04/10/2023
Relative humidity of supply air, RH [%]	50 ± 3	Exposed sample area [m²]	0.048
Temperature of supply air, T [°C]	23 ± 1	Loading factor [m²/m³]	0.4
Background concentration of individual VOC's [µg/m³]	< 2	Test scenario	Flooring or ceiling
Background concentration of TVOC [µg/m³]	< 20	Sample thickness [mm]	87

4.2 Preparation of the Test Specimen

Edges and back were covered with aluminium foil.

4.3 Picture of Sample

4.4 Deviations from Referenced Protocols and Regulations

The handover section of the "Chain of custody" document was not completed by the client.

The parameters for classroom and office were calculated by the client to better represent the correct use of the product (see section 6.1.1). This is in compliance with section 4.3.4 and 4.3.5 of CDPH.

The loading factor was less than the lowest factor of 0.3 m²/m³ that CDPH method specifies for testing; CDPH method does not specify a clear loading factor in any model room.

Sampling media	Day (yyyy-mm-dd)	Time (hh:mm)	Volume [L]	
11 Day, Tenax TA	2023-09-23	11:24 - 12:24	5.3	
11 Day-Res, Tenax TA	2023-09-23	12:25 - 13:12	2.0	
11 Day, DNPH silicagel	2023-09-23	11:22 - 13:11	36	
11 Day-Res, DNPH silicagel	2023-09-23	11:23 - 13:11	36	
12 Day, DNPH silicagel	2023-09-24	11:44 - 13:33	36	
12 Day-Res, DNPH silicagel	2023-09-24	11:44 - 13:33	36	
12 Day, Tenax TA	2023-09-24	11:45 - 12:46	5.4	
12 Day-Res, Tenax TA	2023-09-24	12:46 - 13:34	2.1	
14 Day, Tenax TA	2023-09-26	11:27 - 12:27	5.3	
14 Day-Res, Tenax TA	2023-09-26	12:27 - 13:18	2.3	
14 Day, Carboxen 1000	2023-09-26	08:10 - 10:43	15	
14 Day-Res, Carboxen 1000	2023-09-26	08:11 - 10:44	15	
14 Day, DNPH silicagel	2023-09-26	11:26 - 13:17	37	
14 Day-Res, DNPH silicagel	2023-09-26	11:27 - 13:18	36	

4.5 Air Samplings from the Test Chamber

The analysis are carried out on the sample(s) as received and the result(s) are only valid for the tested sample(s).

This report may only be copied or reprinted in its entirety.

5 Results

5.1 VOC Emission Test Results after 11 Days

	CAS No.	Specific Conc.	Specific SER	Toluene eq.	Toluene SER
		[µg/m³]	[µg/(m²·h)]	[µg/m³]	[µg/(m²·h)]
TVOC (C5-C17)tol. eq.				< 2	< 5
Aldehydes					
Formaldehyde	50-00-0	15	38		
Acetaldehyde	75-07-0	< 3	< 8		

5.2 VOC Emission Test Results after 12 Days

	CAS No.	Specific Conc.	Specific SER	Toluene eq.	Toluene SER
		[µg/m³]	[µg/(m²·h)]	[µg/m³]	[µg/(m²·h)]
TVOC (C5-C17)tol. eq.				< 2	< 5
Aldehydes					
Formaldehyde	50-00-0	14	35		
Acetaldehyde	75-07-0	< 3	< 8		

5.3 VOC Emission Test Results after 14 Days

	CAS No.	Retention time	ID- Cat	SER	Classroom Conc.	Office Conc.	½ CREL
		[min]		[µg/(m²·h)]	[µg/m³]	[µg/m³]	[µg/m³]
VOC (C5-C17)							
None determined					< 1	< 2	
TVOC (C5-C17)tol. eq.				< 5	< 1	< 2	
Aldehydes							
Formaldehyde	50-00-0		1	40	2.5	7.7	9
Acetaldehyde	75-07-0		1	< 8	< 1	< 2	70

The analysis are carried out on the sample(s) as received and the result(s) are only valid for the tested sample(s).

This report may only be copied or reprinted in its entirety.

6 Summary and Evaluation of the Results

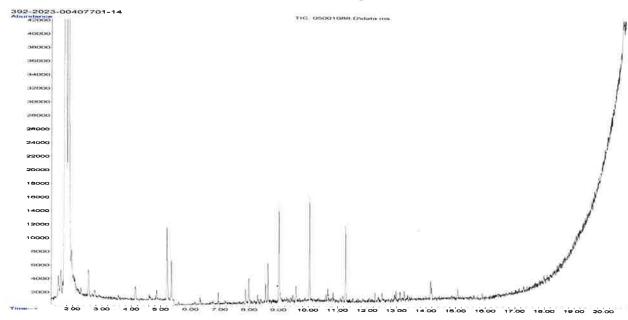
6.1 Comparison with Limit Values of CDPH

Parameters	Test after 14 days					
	CAS No.	Concentration in Classroom	Concentration in Office Room	1∕₂ CREL		
	Single compounds	[µg/m³]	[µg/m³]	[µg/m³]		
TVOC (C5-C17)tol. eq.	₹.	< 1	< 2	<u>19</u>		
Single compounds						
(with defined CREL values)						
None determined		ŝ		12		
Formaldehyde	50-00-0	2.5	7.7	≤ 9		
Acetaldehyde	75-07-0	< 1	< 3	≤ 70		

6.1.1 Conversion of Emission Rates to CDPH Reference Room Concentrations

The CDPH method requires calculation of the measured emission rates into concentrations in given reference rooms. The equation and parameters figured below have been applied to calculate the concentrations in an office room or a classroom as required in the CDPH. The area used in the calculation varies depending on the expected usage of the product and therefore several entries can be found. Small and Very Small areas are not provided within the CDPH but are adapted from definitions given in EN 16516 and ISO 16000-9.

$$C_{Calculated} = \frac{SER_A \cdot A}{n \cdot V}$$


		Classroom parameters	Office Room parameters
SER	Area specific emission rate, μg/(m²h)	As tested	As tested
n	Air change, h ⁻¹	0.82	0.68
V	Volume of reference room, m ³	231	30.6
A	Floor area, m ²	89.2	11.1
	Walls area, m ²	94.6	33.4
	Ceiling and Wall, m ²	183.8	N/A
	Door and Millwork, m ²	1.89	1.89
	Desk or Chair, units	27	1
	Very Small areas, m ²	1.62	0.021
	Small areas, m²	11.55	1.53
	Client specified, m ²	11.71	4.03

7 Appendices

7.1 Chromatogram of VOC Emissions after 14 Days

verSI011.1.1

7.2 Chain of Custody

💱 eurofir			(Allocation) must be primaging to Public set Participant
	Product Tes	ting	Rive sounds -
Com	bined Sampling Re	port and Chain o	of Custody
Name of applicant: (name, company, phone		ise (Special Products) Ltd IQ, UK, +44 (0) 1473 827	d, Lady Lane Industrial Estate 695
	Product	Information	
Name of the product:	XFS090 (FS60)	Product type	Technical insulation
Batch N°:	121105	Article N°:	
Model / Program /		Manufacture:	Siderise (Special Products)
Serles:		(Company, Address, Stamp)	Ltd, Lady Lane Industrial Estate, Hadleigh, Suffolk IP7 6BQ, UK
	Production & Sa	mpling information	1// *
	30-08-2023.	Sampling Date:	
	08:01:00		 11:07:00 ☑ ongoing production
Place of sampling (if deviating from the	Siderise Insulations Ltd, Forge Industrial Estate	Sample is taken from:	stocks
manufature)	Maesteg Bridgend CF34		retained sample
	OAH	Number of samples:	
Person in charge of	Darren Jones, Siderise	Signature of sample	1
sampling: (Name, company, lelephone)	Insulations Ltd. +44 (0)1656 812186	1 M	het .
Where has the	production	How has the product	open
product been stored prior to sampling?	store miscellaneous	been stored prior to sampling?	✓ in the stack ✓ wrapped up
Place of storage:		Packing material:	
emissions, by solvent e any other uncertainties Cut edges (identificatio and identification of new	ample was taken, by petrol missions from production; , questions, etc). n of cut edges when present w surfaces and surface to be	edges and rear to be ta	ct is symmetrical and 4 cut ped by Eurofins with 5mm
exposed in the emissio			face prior to conditioning
		from the applicant	وحديدية المردولية معين والمحد
Herewith the signer co packed	enfirms the correctness of the personally in accordance with	data given above. The site instructions for the ta	ample was selected, drawn ar aking of samples.
Date:	Signature:		
30-58-2203		: Siderise Insulation L1 orge Industrial Estate, Maesteg, CF34 0AY ompany Reg. 02370350	
	Signed:		

	Chain of e	custody	What is a Chain of custody?
Whe	enever the sample is handed over	r, please fill out the below in	nformation
Handed over between:	initials + Signature	Date + Time	Condition
Handed over by			
Handed over to			
Handed over by			
Handed over to			
Handed over by			
Handed over to			
Laboratory receiving d package and sample, a	etails (date, condition of assigned lab no.): 5/9 00	, sa na	1-0040+701
Receptionist, Eurofins	Product Testing A/S: S	ignature of receptionist:	
Martin	Releven	M	

7.3 How to Understand the Results

7.3.1 Acronyms Used in the Report

- < Means less than
- > Means bigger than
- * Not a part of our accreditation
- Please see section regarding uncertainty in the Appendices
- § Deviation from method. Please see deviation section
- a The method is not optimal for very volatile compounds. For these substances smaller results and a higher measurement uncertainty cannot be ruled out
- b The component originates from the substrate and is thus removed
- c The results have been corrected by the emission from the substrate
- d Very polar organic compounds are not suitable for reliable quantification using Tenax TA adsorbent and HP-5ms GC column. A high degree of uncertainty must be expected
- e The component may be overestimated due to contribution from the system
- SER Specific Emission Rate

7.3.2 Explanation of ID Category

Categories of Identity:

1: Identified by comparison with a mass spectrum obtained from library and supported by other information and quantified through specific calibration.

2: Identified by comparison with a mass spectrum obtained from library and supported by other information. Quantified as toluene equivalent.

3: Identified with a lower match by comparison with a mass spectrum obtained from a library. Quantified as toluene equivalent.

4: Not identified, quantified as toluene equivalent.

The analysis are carried out on the sample(s) as received and the result(s) are only valid for the tested sample(s).

7.4 Description of VOC Emission Test

7.4.1 Test Chamber

The test chamber is made of stainless steel. A multi-step air clean-up is performed before loading the chamber, and a blank check of the empty chamber is performed.

The chamber operation parameters are as described in the test method section. (EN 16516, ISO 16000-9, internal method no.: 71M549811).

The recovery rates in the climate test chamber have been investigated using toluene and n-dodecane. The mean recovery rates of toluene and n-dodecane were concluded to be between 95 % and 100 % depending on the chamber size. These values comply with the criteria of a minimum mean recovery rate of 80 % stated in the 16000-9 test method.

Air sampling from the test chamber is carried out in a clean test chamber room at ambient air pressure and 23 ± 1 °C.

7.4.2 Expression of the Test Results

All test results are calculated as specific emission rate, and as extrapolated air concentration in the European Reference Room (EN 16516, AgBB, EMICODE, M1 and Indoor Air Comfort).

7.4.3 Testing of Carcinogenic VOCs

The emission of carcinogens (EU Categories C1A and C1B, as per European law) is tested by drawing sample air from the test chamber outlet through Tenax TA tubes after the specified duration of storage in the ventilated test chamber. Analysis is performed by ATD-GC/MS (automated thermal desorption coupled with gas chromatography and mass spectroscopy using 30 m HP-5 (slightly polar) column with 0.25 mm ID and 0.25 μ m film, Agilent) (EN 16516, ISO 16000-6, internal methods no.: 71M549812 / 71M542808B).

All identified carcinogenic VOCs are listed; if a carcinogenic VOC is not listed then it has not been detected. Quantification is performed using the TIC signal and authentic response factors, or the relative response factors relative to toluene for the individual compounds.

This test only covers substances that can be adsorbed on Tenax TA and can be thermally desorbed. If other emissions occur, then these substances cannot be detected (or with limited reliability only).

7.4.4 Testing of VOC

The emissions of volatile organic compounds are tested by drawing sample air from the test chamber outlet through Tenax TA tubes after the specified duration of storage in the ventilated test chamber. Analysis is performed by ATD-GC/MS using HP-5 column (30 m, 0.25mm ID, 0.25µm film).

This test only covers substances which can be adsorbed on Tenax TA and can be thermally desorbed. If emissions of substances outside these specifications occur then these substances cannot be detected (or with limited reliability only).

7.4.5 Testing of Aldehydes

The presence of aldehydes is tested by drawing air samples from the test chamber outlet through DNPHcoated silicagel tubes after the specified duration of storage in the ventilated test chamber. Analysis is performed by solvent desorption and subsequently by HPLC and UV-/diode array detection.

The absence of formaldehyde and other aldehydes is stated if UV detector response at the specific wavelength is lacking at the specific retention time in the chromatogram. Otherwise it is checked whether the reporting limit is exceeded. In this case the identity is finally checked by comparing full scan sample UV spectra with full scan standard UV spectra.

Conversions of specific aldehydes from µg/m³ to ppm are done by the ideal gas law using a temperature of 23 degree Celsius and standard atmospheric pressure.

The analysis are carried out on the sample(s) as received and the result(s) are only valid for the tested sample(s).

7.4.6 Testing of Charcoal tubes

The presence of low boiling VOC is tested by drawing air samples from the test chamber outlet through charcoal tubes after the specified duration of storage in the ventilated test chamber. Analysis is performed by solvent desorption and subsequently by HS-GC/MS using a stabilwax column. This test only covers substances which has a CREL value and are not possible to sample on Tenax tubes.

7.5 Quality Assurance

Before loading the test chamber, a blank check of the empty chamber is performed and compliance with background concentrations in accordance with EN 16516 / ISO 16000-9 is determined.

Air sampling at the chamber outlet and subsequent analysis is performed in duplicate. Relative humidity, temperature and air change rate in the chambers is logged every 5 minutes and checked daily. A double determination is performed on random samples at a regular interval and results are registered in a control chart to ensure the uncertainty and reproducibility of the method.

The stability of the analytical system is checked by a general function test of device and column, and by use of control charts for monitoring the response of individual substances prior to each analytical sequence.

7.6 Accreditation

The testing methods described above are accredited on line with EN ISO/IEC 17025 by DANAK (no. 522). This accreditation is valid worldwide due to mutual approvals of the national accreditation bodies (ILAC/IAF, see also www.eurofins.com/galten.aspx#accreditation).

Not all parameters are covered by this accreditation. The accreditation does not cover parameters marked with an asterisk (*), however analysis of these parameters is conducted at the same level of quality as for the accredited parameters.

7.7 Uncertainty of the Test Method

The relative standard deviation of the overall analysis is 22%. The expanded uncertainty Um equals 2 x RSD. For further information please visit www.eurofins.dk/product-testing/uncertainty/.

7.8 Decision Rules

Eurofins Product Testing A/S, declare statement of conformity based on the "Binary Statement for Simple Acceptance Rule" described in ILAC's "Guidelines on decision Rules and Statements of Conformity" ILAC-G8:09/2019.

This means that results above the detection limit are always reported with two significant digits. Results are evaluated with the same number of significant digits as the corresponding limit values, and conformity is based on results being less than or equal to limit values.

For limit values with more than two significant digits, the third digit will be used to confirm whether a result is below or equal to the limit value. It will always be indicated in the evaluation table if this expanded evaluation is performed.

For further information, please visit www.eurofins.dk/product-testing/om-os/beslutningsregler/

7.9 Version History

Report date	Report number	Modification
01/11/2023	392-2023-00407701_H_EN_rev2	Revision of the conversion from SER to the CDPH reference rooms. The client has provided revised areas for the use of the product.
		This version is considered valid.
12/10/2023	392-2023-00407701_H_EN_rev1	Revision of the conversion from SER to the CDPH reference rooms. The client has provided more accurate areas for the use of the product.
		This version is no longer valid.
04/10/2023	392-2023-00407701_H_EN	This version is no longer valid.

Altro Ltd.

Works Road

Letchwood Garden City

SG6 1NW Hertfordshire

UNITED KINGDOM

Product Testing

Eurofins Product Testing Denmark A/S Smedeskovvej 38 8464 Galten Denmark

CustomerSupport@eurofins.com www.eurofins.com

VOC EMISSION TEST REPORT EN 16516

31 January 2024

Sample Information 1

Sample name Batch no. Stated production date Product type Sample reception	AltroFix W139 10-246624-24 09/10/2023 Adhesive
	08/12/2023

abot Un

Mads Folkjær Analytical Chemist

oneugen Laura Hartung Sørensen

Analytical Service Manager

Table of contents

			1
1		Sample Information	3
2		Applied Test Methods	3
	2.1	General Test References	3
	2.2	Specific Laboratory Sampling and Analyses	4
3		Test Parameters, Sample Preparation and Deviations	4
Ĩ	3.1	VOC Emission Chamber Test Parameters	4
	3.2	Preparation of the Test Specimen	4
	3.3	Picture of Sample	5
	3.4	Deviations from Referenced Protocols and Regulations	5
	3.5	Air Samplings from the Test Chamber	6
4		Results	6
4	4.1	VOC Emission Test Results after 28 Days	
	4.1		7
5		Appendices	7
	5.1	Chromatogram of VOC Emissions after 28 Days	8
	5.2	Sampling Report	10
	5.3	How to Understand the Results	11
	5.4	CUCO Emission Test	12
	5.5		13
	5.6		14
	5.7	Accreditation	14
	5.8	and the second	14
	5.9	y Version History	

The analysis are carried out on the sample(s) as received and the result(s) are only valid for the tested sample(s).

2 Applied Test Methods

2.1 General Test References

Regulation, protocol or standard	Version	Reporting limit VOC [µg/m³]	Calculation of TVOC	Combined uncertainty [®]
EN 16516	2017 + A1:2020			[RSD(%)]
ISO 16000 -3 -6 -9 -11		5	Toluene equivalents	22%
ASTM D5116-10	2006-2022 depending on part 2010	2	Toluene equivalents	22%
				a.

2.2 Specific Laboratory Sampling and Analyses

Procedure	External Method	Internal SOP	Quantification limit / sampling volume	Analytical principle	Uncertainty ⁻ [RSD(%)]
Sample preparation	ISO 16000-11:2006, EN 16516:2017+A1:2020	71M549810			[
Emission chamber testing	ISO 16000-9:2006, EN 16516:2017+A1:2020	71M549811		Chamber and air	
Sampling of VOC	ISO 16000-6:2021, EN 16516:2017+A1:2020	71M549812	5 L	control Tenax TA	2
Analysis of VOC	ISO 16000-6:2021, EN 16516:2017+A1:2020	71M542808B	1 µg/m³	ATD-GC/MS	- 10%
Sampling of aldehydes	ISO 16000-3:2022, EN 16516:2017+A1:2020	71M549812	35 L	DNPH	
Analysis of aldehydes	ISO 16000-3:2022, EN 16516:2017+A1:2020	71M548400	3-6 µg/m³	HPLC-UV	10%

🛟 eurofins

3 Test Parameters, Sample Preparation and Deviations

Product Testing

3.1 VOC Emission Chamber Test Parameters

3.1 VUC Emission onamis	Value	Sample Conditions	Value
Parameters	value		
Chamber volume, V[L]	119	Date and time of unpacking and start of sample preparation	27/12/2023 - 10:43
Air change rate, n[h-1]	0.5	Preconditioning period	
	0.1	Chamber test period	27/12/2023 - 24/01/2024
Air Velocity [m/s]			27/12/2023 - 29/01/2024
Area specific ventilation rate, q [m/h or m³/m²/h]	0.5	Analytical test period	
Relative humidity of supply air, RH [%]	50 ± 3	Exposed sample area [m ²]	0.12
Temperature of supply air, T [°C]	23 ± 1	Loading factor [m²/m³]	1.0
Background concentration of individual VOC's [µg/m³]	< 2	Test scenario	Wall
Background concentration of TVOC [µg/m³]	< 20		

3.2 Preparation of the Test Specimen

The two component sample was mixed in a ratio A : B according to the client's instructions before it was homogenised, applied onto a glass plate and structured with a notched trowel.

Mixing ratio, A : B	Trowel	
12:1	TKB B1	

3.3 Picture of Sample

3.4 Deviations from Referenced Protocols and Regulations

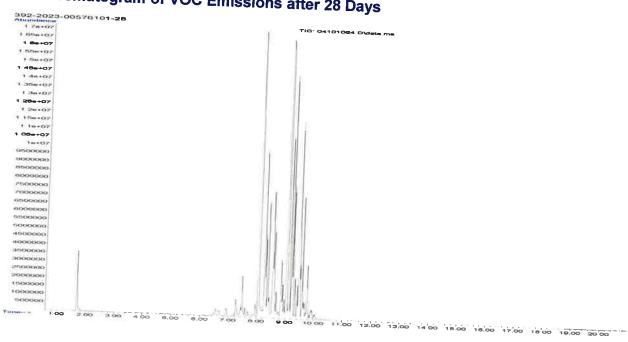
No deviations from the referenced test methods were observed.

3.5 Air Samplings from the Test Chamber

Sampling media	Day (same may of th			
28 Day DUDU	Day (yyyy-mm-dd)	Time (hh:mm)	Volume [L]	
28 Day, DNPH silicagel	2024-01-24	09:13 - 11:03		
28 Day-Res, DNPH silicagel	2024-01-24	09:13 - 11:03	36	
28 Day, Tenax TA	2024-01-24		36	
28 Day-Res, Тепах ТА		09:15 - 10:15	5.1	
	2024-01-24	10:15 - 11:04	2.3	

4 Results

4.1 VOC Emission Test Results after 28 Days


	CAS No.	Retention time	ID- Cat	Specific Conc.	Toluene eq.	Specific SER	R _{EU}
		[min]		[µg/m³]	[µg/m³]	[µg/(m²·h)]	
OC with NIK/LCI				30	31	15	0.0050
5-Dimethyloctane *	15869-93-9	7.42	1			o 40	0.11
2,4,6,6- entamethylheptane *	13475-82-6	9.04	1	690	780	340	
ther saturated aliphatic ydrocarbons C9-C16 *		6.4-10.3	2	5700	5700	2900	0.95
OC without NIK/LCI							
lone determined						< 3	
oum of VOC without NIK/LCI				< 5	< 5		
/VOC compounds							
None determined					< 5	< 3	
TVVOC				< 5			
SVOC compounds							
None determined				< 5	< 5	< 3	1999 A. P. C. C. C. C.
TSVOC				- 5			
Carcinogens				< 1	< 1	< 1	
Total carcinogens				~ ~ ~			
Aldehydes			1	< 3		< 2	
Formaldehyde	50-00-0		1			< 2	
Acetaldehyde	75-07-0			< 3		< 2	
Propionaldehyde	123-38-6			1 < 3		< 2	
Butyraldehyde	123-72-8			1 < 5		< 3	
Acrolein *	107-02-8 123-73-9			1 < 5		< 3	
2-Butenal *	123-73-			1 < 5		< 3	
Glutaraldehyde *	111-30-0						1.
R-values						3200	

5 Appendices

5.1 Chromatogram of VOC Emissions after 28 Days

5.2 Sampling Report

	Limited, Works Road, Letchworth Garden City, SG6 1NW,
me of applicant: Karen Masters, Altro I ame, company, phone) UK, +44 1462 480480)
Produ	et information
ame of the product: AltroFix W139	Product type Adhesive
atch N°: 10-246624-24	Article N°:
lodel / Program / eries:	Manufacture:Altro Limited, Works Road,(Company, Address,Letchworth Garden City, SG6Stamp)1NW, UK
Production	& Sampling Information
Production Date:	Sampling Date: Time:
Fime: Place of sampling if deviating from the	Sample is taken from: ongoing production stocks retained sample
manufature)	Number of samples:
Person in charge of Karen Masters, Altro sampling: Limited (Name, company, telephone)	Signature of sample Karen Masters collector:
Where has the production product been stored v prior to sampling? miscellaneous	How has the product open been stored prior to in the stack sampling? wrapped up
Place of storage: UK	Packing material:
Specifics (possible negative influences by air contamination where sample was taken, by per emissions, by solvent emissions from product any other uncertainties, questions, etc).	lion
Cut edges (identification of cut edges when pi and identification of new surfaces and surface exposed in the emission test):	5 10 00
	nation from the applicant s of the data given above. The sample was selected, drawn nce with the instructions for the taking of samples.
Date: Signature:	
7/12/2023 (Stamp)	SIRLS DETCHMOTING GARDEN CTU HIDTS TOR INN HEI LALIDISGE INN CON AT THE LALIDISGE TOW

	Chain of c	custody	What is a Chain of custody
When	never the sample is handed ove	r please fill out the balow	afa
	initials + Signature		lormation
between:	initiale + Signature	Date + Time	Condition
Handed over by			
Handed over to			
landed over by			
landed over to			
anded over by			
anded over to			
boratory receiving detai ckage and sample, assig ceptionist, Eurofins Pro	gned lab no.): 8/12 04	342 223-239 nature of receptionist:	76101

5.3 How to Understand the Results

Acronyms Used in the Report 5.3.1

- Means less than <
- Means bigger than >
- Not a part of our accreditation *
- Please see section regarding uncertainty in the Appendices ¤
- Deviation from method. Please see deviation section
- The method is not optimal for very volatile compounds. For these substances smaller results and a § higher measurement uncertainty cannot be ruled out а
- The component originates from the substrate and is thus removed
- b The results have been corrected by the emission from the substrate
- Very polar organic compounds are not suitable for reliable quantification using Tenax TA adsorbent С and HP-5ms GC column. A high degree of uncertainty must be expected d
- The component may be overestimated due to contribution from the system е

Product Testing

Specific Emission Rate SER

5.3.2 Explanation of ID Category

Categories of Identity:

1: Identified by comparison with a mass spectrum obtained from library and supported by other information and quantified through specific calibration.

2: Identified by comparison with a mass spectrum obtained from library and supported by other information. Quantified as toluene equivalent.

3: Identified with a lower match by comparison with a mass spectrum obtained from a library. Quantified as toluene equivalent.

4: Not identified, quantified as toluene equivalent.

The analysis are carried out on the sample(s) as received and the result(s) are only valid for the tested sample(s).

5.4 Applied LCI Values

5.4.1 LCI/NIK Values for Compounds found after 28 Day Measurements

	y measure include
CAS No.	LCI
	[µg/m³]
15869-93-9	6000
	0000
13475-82-6	6000
	6000

5.5 Description of VOC Emission Test

The test chamber is made of stainless steel. A multi-step air clean-up is performed before loading the chamber, and a blank check of the empty chamber is performed.

The chamber operation parameters are as described in the test method section. (EN 16516, ISO 16000-9,

The recovery rates in the climate test chamber have been investigated using toluene and n-dodecane. The mean recovery rates of toluene and n-dodecane were concluded to be between 95 % and 100 % depending on the chamber size. These values comply with the criteria of a minimum mean recovery rate of 80 % stated

Air sampling from the test chamber is carried out in a clean test chamber room at ambient air pressure and in the 16000-9 test method.

23 ± 1 °C.

5.5.2 Expression of the Test Results

All test results are calculated as specific emission rate, and as extrapolated air concentration in the European Reference Room (EN 16516, AgBB, EMICODE, M1 and Indoor Air Comfort).

5.5.3 Testing of Carcinogenic VOCs

The emission of carcinogens (EU Categories C1A and C1B, as per European law) is tested by drawing sample air from the test chamber outlet through Tenax TA tubes after the specified duration of storage in the ventilated test chamber. Analysis is performed by ATD-GC/MS (automated thermal desorption coupled with gas chromatography and mass spectroscopy using 30 m HP-5 (slightly polar) column with 0.25 mm ID and 0.25 µm film, Agilent) (EN 16516, ISO 16000-6, internal methods no.: 71M549812 / 71M542808B).

All identified carcinogenic VOCs are listed; if a carcinogenic VOC is not listed then it has not been detected. Quantification is performed using the TIC signal and authentic response factors, or the relative response factors relative to toluene for the individual compounds.

This test only covers substances that can be adsorbed on Tenax TA and can be thermally desorbed. If other emissions occur, then these substances cannot be detected (or with limited reliability only).

5.5.4 Testing of VOC, SVOC and VVOC

The emissions of volatile organic compounds are tested by drawing sample air from the test chamber outlet through Tenax TA tubes after the specified duration of storage in the ventilated test chamber. Analysis is performed by ATD-GC/MS using HP-5 column (30 m, 0.25mm ID, 0.25µm film) (EN 16516, ISO 16000-6, internal methods no.: 71M549812 / 71M542808B).

All single substances that are listed with a LCI/NIK value in the latest publications (hereafter referred to as target compounds) are identified if present. All other appearing VOCs are identified as far as possible. Quantification of target compounds is done using the TIC signal and authentic response factors, or the relative response factors relative to toluene. For certain compound groups, which differ significantly in chemistry from toluene, quantification is performed relative to a representative member of the group for more accurate and precise results. This can include quantification of for example glycols and acids. In addition to that, all results are also expressed in toluene equivalents. All non-target compounds, as well as all nonidentified substances, are quantified in toluene equivalents.

The results of the individual substances are calculated in three groups depending on their retention time when analyzing using a non-polar column (HP-1):

- Volatile Organic Compounds (VOC) are defined as: All substances eluting between and including n-hexane (n-C6) and n-hexadecane (n-C16)

The analysis are carried out on the sample(s) as received and the result(s) are only valid for the tested sample(s).

- Semi-Volatile Organic Compounds (SVOC) are defined as: All substances eluting after n-hexadecane (n-C16) and before and including n-docosane (n-C22)

- Very Volatile Organic Compounds (VVOC) are defined as: All substances eluting before

Total Volatile Organic Compounds (TVOC) is calculated by summation of all individual VOCs with a concentration ≥ 5 µg/m³. The TVOC can be expressed either in toluene equivalents as defined in EN 16516 and similar to ISO 16000-6, or as the sum of concentrations using specific or relative response factors. In the case of summation of concentrations using authentic or relative response factors, the toluene equivalent is applied to all non-target and non-identified VOCs before summing up. Compounds regarded as VOC in line with the above definition but elute before n-C6 or after n-C16 on the HP-5 column are treated as VOC, and

Total Semi-Volatile Organic Compounds (TSVOC) is calculated by the summation of all individual SVOCs expressed in toluene equivalents with a concentration ≥ 5 µg/m³, as defined in EN 16516. VOCs that are regarded as VOC in line with the above definition, but elute after n-C16 in this test, are not added to the

Total Very Volatile Organic Compounds (TVVOC) is calculated by the summation of all individual VVOCs with a concentration \ge 5 µg/m³ and expressed in toluene equivalents. VOCs that are regarded as VOC in line with the above definition, but elute before n-C6 in this test, are not added to the TVVOC.

This test only covers substances which can be adsorbed on Tenax TA and can be thermally desorbed. If emissions of substances outside these specifications occur then these substances cannot be detected (or

5.5.5 Testing of Aldehydes

The presence of aldehydes is tested by drawing air samples from the test chamber outlet through DNPHcoated silicagel tubes after the specified duration of storage in the ventilated test chamber. Analysis is performed by solvent desorption and subsequently by HPLC and UV-/diode array detection.

The absence of formaldehyde and other aldehydes is stated if UV detector response at the specific wavelength is lacking at the specific retention time in the chromatogram. Otherwise it is checked whether the reporting limit is exceeded. In this case the identity is finally checked by comparing full scan sample UV

Conversions of specific aldehydes from µg/m³ to ppm are done by the ideal gas law using a temperature of 23 degree Celsius and standard atmospheric pressure.

5.6 Quality Assurance

Before loading the test chamber, a blank check of the empty chamber is performed and compliance with background concentrations in accordance with EN 16516 / ISO 16000-9 is determined.

Air sampling at the chamber outlet and subsequent analysis is performed in duplicate. Relative humidity, temperature and air change rate in the chambers is logged every 5 minutes and checked daily. A double determination is performed on random samples at a regular interval and results are registered in a control chart to ensure the uncertainty and reproducibility of the method.

The stability of the analytical system is checked by a general function test of device and column, and by use of control charts for monitoring the response of individual substances prior to each analytical sequence.

5.7 Accreditation

The testing methods described above are accredited online with EN ISO/IEC 17025 by DANAK (no. 522). This accreditation is valid worldwide due to mutual approvals of the national accreditation bodies (ILAC/IAF, see also www.eurofins.com/galten.aspx#accreditation).

Product Testing

Not all parameters are covered by this accreditation. The accreditation does not cover parameters marked with an asterisk (*), however analysis of these parameters is conducted at the same level of quality as for the accredited parameters.

5.8 Uncertainty of the Test Method

The relative standard deviation of the overall analysis is 22%. The expanded uncertainty Um equals 2 x RSD. For further information please visit www.eurofins.dk/product-testing/uncertainty/.

5.9 Version History

	Report number	Modification		
Report date		Current version		
31/01/2024	392-2023-00576101_QE_EN	oundid the		

PANEL INNOVATION

An Industry First

THE BACKGROUND

As part of strides to create healthier, more sustainable building practices, the industry has developed a number of well-known, and well-utilised standards, in order to measure, monitor and assess our projects.

At Thorpes Joinery, we understand the pivotal role construction materials play in the overall impact of a building on both the environment and its occupants, and look for opportunities to lessen or negate this impact wherever possible.

On such opportunity was presented on one of our projects 'Project Emerald', which carried a clear and ambitious target: to create the country's healthiest workspace.

Clearly, BREEAM (Building Research Establishment Environmental Assessment Method) and WELL building standards were going to take centre stage, with "Outstanding" and "Platinum" expected at a minimum.

THE CHALLENGE

As part of our shared commitment with Overbury and our client, we sought areas for innovation, and aimed to identify problem areas within the project.

On such issue identified was the use of Volatile Organic Compounds (VOCs).

Commonly found in many construction materials, especially lacquers, VOCs can contribute to indoor air pollution, posing potential health risks and environmental harm.

For example, a recent study* found that after the application of lacquer VOC concentration increased greatly, with the amount released jumping by over 200%.

There have been efforts to reduce this, with new products and techniques hitting the market, but there have been limited practical applications so far.

*Wang, Q., Zeng, B., Shen, J. et al. Effect of lacquer decoration on VOCs and odor release from P. neurantha (Hemsl.) Gamble. Sci Rep 10, 9565 (2020). https://doi.org/10.1038/s41598-020-66724-0

Product tested

Faced with pure timber veneer (Compatible with American Black Walnut) With a clear semi matt euro class B lacquer Overall panel performs to euro class B

Testing body

Eurofins is the world market leader for VOC emission chamber testing with more than 20 years experience in delivering reliable test results

For example BREEAM requirements are:

To gain this credit, formaldehyde and TVOC concentration levels must be within specified limits OR corrective measures put in place to meet these limits.

There are two measures that must be met in order to gain this credit. These levels are measured post-construction, but pre-occupancy.

The formaldehyde concentration level needs to be less than or equal to 100µg/averaged over 30 minutes.
 The total volatile organic compound (TVOC) concentration level needs to be less than 300µg/over 8 hours.
 Thorpes = 24µg/averaged over 30 minutes.
 Thorpes = 100µg/over 8 hours.

As the test below have measured against regulations in France, Italy, Germany and Belgium we have classed these as European

voc	European VOC regulation	European construction component VOC	Eurofins Indoor Air Comfort	BREEAM International V6	BREEAM NOR V6	EU Taxonomy
Formaldehyde	Pass	Pass	Peers	20100		
Acetaldehyde	Pass		Pass	Pass	Pass	Pass
Toluene		Pass	Pass	Pass	Pass	Pass
Tetrachloroethylene	Pass	Pass	Pass	Pass	Pass	Pass
	Pass	Pass	Pass	Pass	Pass	
Xylene	Pass	Pass	Pass	Pass		Pass
1,2,4 - Trimrthlbenzene	Pass	Pass			Pass	Pass
1,4 - Dichlorobenzene	Pass		Pass	Pass	Pass	Pass
Ethylbenzene		Pass	Pass	Pass	Pass	Pass
	Pass	Pass	Pass	Pass	Pass	Pass
2-Butoxyethanol	Pass	Pass	Pass	Pass		
Styrene	Pass	Pass	Pass		Pass	Pass
VOC (total volatile organic compounds)	Pass	And a second sec		Pass	Pass	Pass
	1033	Pass	Pass	Pass	Pass	Pass

PANEL INNOVATION

An Industry First

THE BACKGROUND

As part of strides to create healthier, more sustainable building practices, the industry has developed a number of well-known, and well-utilised standards, in order to measure, monitor and assess our projects.

At Thorpes Joinery, we understand the pivotal role construction materials play in the overall impact of a building on both the environment and its occupants, and look for opportunities to lessen or negate this impact wherever possible.

On such opportunity was presented on one of our projects 'Project Emerald', which carried a clear and ambitious target: to create the country's healthiest workspace.

Clearly, BREEAM (Building Research Establishment Environmental Assessment Method) and WELL building standards were going to take centre stage, with "Outstanding" and "Platinum" expected at a minimum.

THE CHALLENGE

As part of our shared commitment with Overbury and our client, we sought areas for innovation, and aimed to identify problem areas within the project.

On such issue identified was the use of Volatile Organic Compounds (VOCs).

Commonly found in many construction materials, especially lacquers, VOCs can contribute to indoor air pollution, posing potential health risks and environmental harm.

For example, a recent study^{*} found that after the application of lacquer VOC concentration increased greatly, with the amount released jumping by over 200%.

There have been efforts to reduce this, with new products and techniques hitting the market, but there have been limited practical applications so far.

*Wang, Q., Zeng, B., Shen, J. et al. Effect of lacquer decoration on VOCs and odor release from P. neurantha (Hemsl.) Gamble. Sci Rep 10, 9565 (2020). https://doi.org/10.1038/s41598-020-66724-0

THE DEVELOPMENT

The challenge of sourcing Class B fire rated lacquer that meets BREEAM and WELL standards prompted a shift towards product testing.

We set out to achieve what we believe to be an industry-first: a veneered, MDF panel finished in a Class B, water-based lacquer that would meet the stringent requirements of both WELL and BREEAM.

This process involved creating a unique build-up for the product, before sending for testing in Denmark with Eurofins: the world market leader for VOC emission chamber testing.

Once there, it was subjected to a 28-day chamber test.

This test showcased a VOC level of \leq 160 µg/m3, and a Formaldehyde Level of 130 µg/m3, comfortably below the WELL threshold of 0.01mg/m3.

The product also demonstrated compliance with various regulations, including French VOC Regulation, French CMR components, Italian CAM Edilizia, ABG/AgBB, Belgian Regulation, and Indoor Air Comfort standards.

THE IMPACT

The introduction of our timber veneered panel has had a profound impact on our service offerings in the commercial fit-out market.

Beyond the technical achievements, the development process emphasized a careful sourcing approach, leveraging supplier relationships and industry knowledge spanning decades.

The commitment to sustainability is evident in the responsible sourcing certificates for the substrate and veneer (FSC Compliant). Additionally, the adhesives and lacquer components are procured from companies with 'ISO 14001 integrated management systems' certificates, affirming their dedication to sustainable operations.

The implications of this innovation extend far beyond the technical realm.

The new product not only meets high standards for emissions and fire regulations but also contributes to creating a cleaner workspace without compromising aesthetics or performance.

Architects, designers, and contractors now have access to a sustainable material that not only enhances the aesthetic appeal of their projects but also contributes to a healthier indoor environment.

Product tested

18mm MDF

Faced with pure timber veneer (Compatible with American Black Walnut) With a clear semi matt euro class B lacquer Overall panel performs to euro class B

Testing body

Eurofins is the world market leader for VOC emission chamber testing with more than 20 years experience in delivering reliable test results

For example BREEAM requirements are:

To gain this credit, formaldehyde and TVOC concentration levels must be within specified limits OR corrective measures put in place to meet these limits.

There are two measures that must be met in order to gain this credit. These levels are measured post-construction, but pre-occupancy.

- The formaldehyde concentration level needs to be less than or equal to 100µg/averaged over 30 minutes. Thorpes = 24µg/averaged over 30 minutes
- The total volatile organic compound (TVOC) concentration level needs to be less than 300µg/over 8 hours. Thorpes = 100µg/over 8 hours

VOC	European VOC regulation	European construction component VOC	Eurofins Indoor Air Comfort	BREEAM International V6	BREEAM NOR V6	EU Taxonomy
Formaldehyde	Pass	Pass	Pass	Pass	Pass	Pass
Acetaldehyde	Pass	Pass	Pass	Pass	Pass	Pass
Toluene	Pass	Pass	Pass	Pass	Pass	Pass
Tetrachloroethylene	Pass	Pass	Pass	Pass	Pass	Pass
Xylene	Pass	Pass	Pass	Pass	Pass	Pass
1,2,4 - Trimrthlbenzene	Pass	Pass	Pass	Pass	Pass	Pass
1,4 - Dichlorobenzene	Pass	Pass	Pass	Pass	Pass	Pass
Ethylbenzene	Pass	Pass	Pass	Pass	Pass	Pass
2-Butoxyethanol	Pass	Pass	Pass	Pass	Pass	Pass
Styrene	Pass	Pass	Pass	Pass	Pass	Pass
TVOC (total volatile organic compounds)	Pass	Pass	Pass	Pass	Pass	Pass

e test below have measured against regulations in France. Italy, Germany and Relgium we have classed these as European